Digital Signal Processing Final ProjectFALL SEMESTER 2019

教授:李琳山

組員: B05901011 許秉倫: 爬蟲, 畫embedding散佈圖

B05901082 楊晟甫: Embedding, Cosine Similarity, PRF, 實驗

Github Link: https://github.com/joeyy5588/DSP2019SPRING/tree/master/dsp_final

Background

每每到了選課的季節,我們總是會上台大課程網搜尋下學期有興趣修的課,然而,因為課程網的 搜尋方式是用逐字比對的,因此,我們往往搜尋不到真正「相關」的課程。

我們登入台大課程網後,搜尋「人工智慧」的結果如下:

人工智慧在臨床資料的分析與應用	人工智慧與心理學書報討論三	人工智慧及深度機器學習之生 醫藥產業應用
人工智慧神經網路模型應用	高效能人工智慧系統	人工智慧與法律專題研究二

雖然每堂課真的有包含「人工智慧」這個詞,但與「人工智慧」相關的其他課程諸如「機器學習」、「深度學習」等等,卻一項都沒有出現。

因此,我們的目標就是要用課堂所學的方法做出一個更好的搜尋系統!

Overview

在開始之前,我們設計了我們的實作流程

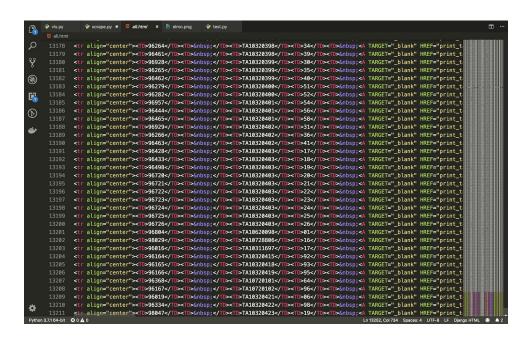
- 1. 登入台大課程網,將所有課程(包含名稱、課號等等)爬取下來,整理為表格。
- 2. 嘗試使用不同Embedding方法,看何者能對課名有最好的分群(評斷標準為,分群結果是 否有和系所符合),最後選用效果最好的分群方法。
- 3. 使用基本的cosine similarity, 取出最大的similarity。

- 4. 使用PRF(pseudo relevance feedback)做query,取出最符合的項目。
- 5. 結果分析與討論。

Step 1. 爬下所有課程資料

```
# 查詢參數
my_params = {
    'current_sem': '107-2',
    'cstype': 1,
    'alltime': 'yes',
    'allproced':'yes',
    'allsel':'yes',
    'startrec': 10000,
    'page_cnt': 2500,
    'Submit22':'%Acd%B8%DF',
}
# 將查詢參數加入 GET 請求中
r = requests.post('http://nol2.aca.ntu.edu.tw/nol/coursesearch/search_result.php', params = my_params)
```

我們使用Http request中的post method向課程網發送請求,課程網就會將一串串課程資料利用 html的格式回傳給我們,



資料非常之雜亂,因此我們使用"beautiful soup"這個套件,對html做parsing,最終取出課名和課號。

整理過後的資料會是這種形式,課名對應到課號。

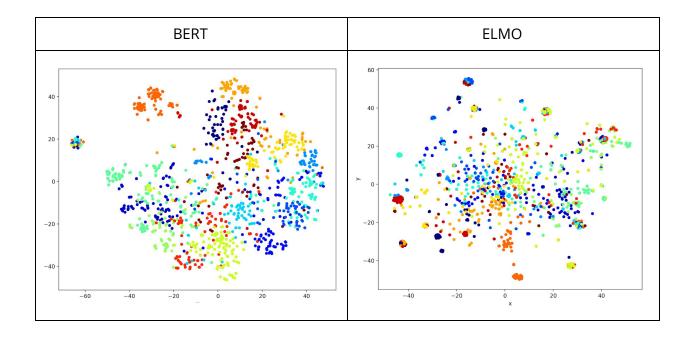
```
{
    '國文領域': 'Common1012',
    '外文領域下': 'Common1010',
    '英文領域下': 'Common1004',
    '適應體育(生理班)': 'PE1007',
    '適應體育(肢體班)': 'PE1005'
}
```

Step 2. 選取最佳Embedding

我們將課名經過"BERT"和"ELMO"兩種方式Embedding,使用「系所」當做label。

使用TSNE將結果畫出,每種顏色對應的是一個系所,經觀察比較過後我們認為BERT在我們的 task中,較能將資料區分開,具有較強的分群能力(課程名稱的embedding有較高的semantic information)。

因此,接下來我們會使用BERT繼續實作!



Step 3. 使用cosine similarity 做query

```
query = "人工智慧"
bc = BertClient()
vector = bc.encode([query])

rank_list = []
for key in embedding_dict:
    rank_list.append([embedding_dict[key]])
rank_list = np.array(rank_list).squeeze()

top_k_index, bottom_k_index = topK(vector, rank_list, K)

top_result, bottom_result = topK_result(top_k_index, bottom_k_index, K)
```

我們將所有課程名稱以及query text轉成word embedding,將query embedding與course name embedding做cosine similarity 的計算,並由大到小排序,並顯示top-K個以及bottom-K的搜尋結果

```
def topK(vector, rank_list, K):
   dot = np.dot(rank list, vector.transpose())
   norma = np.linalg.norm(vector)
   normb = np.linalg.norm(rank_list, axis = 1)
    cos_sim = dot.flatten() / (norma * normb)
    cos_sim_rank = np.flip(np.argsort(cos_sim))
    top k index = cos sim rank[:K]
    bottom_k_index = cos_sim_rank[-K:]
    return top_k_index, bottom_k_index
def topK result(top k index, bottom k index, K):
    original_dict = load_obj('course')
    top_result = [0] * K
    bottom_result = [0] * K
    for i, (k, v) in enumerate(original_dict.items()):
        if i in top_k_index:
            top_result[np.where(top_k_index == i)[0][0]] = v
        elif i in bottom_k_index:
            bottom_result[np.where(bottom_k_index == i)[0][0]] = v
    return top_result, bottom_result
```

在這個階段中,我們使用"高雄發大財"作為query,搜尋到的結果依序為:公司理財一、現代農業體驗一、臺灣農業、資管專題一、社會痛苦、國際農業體驗二、現代農業體驗二、燈光技術一、集水區經營、阿美語一下

Step 4. 使用PRF 優化

PRF的流程大致可以分為以下四步:

- 1. 計算cosine similarity並對document(in our case, course name embedding) 做排序
- 2. 取出top K 個並假定其是跟我們的query相關的,而bottom K個則是無關的
- 3. 使用relevance feedback,我們使用的是Rocchio Algorithm,其公式如圖:

Note: q0是原query, Dr為relevant set, Nr為irrelevant set, alpha, beta, gamma為參數, 我們分別將其設定為1, 0.75, 0.15

$$\vec{q}_m = \alpha \vec{q}_0 + \beta \frac{1}{\left| D_r \right|} \sum_{\vec{d}_j \in D_r} \vec{d}_j - \gamma \frac{1}{\left| D_{nr} \right|} \sum_{\vec{d}_j \in D_{nr}} \vec{d}_j$$

4. 使用feedback 修正我們的query, 並重複以上1~4步驟

```
def PRF(query, rank_list, top_k_index, bottom_k_index, K):
    alpha = 1
    beta = 0.75
    gamma = 0.15
    rel = np.sum(rank_list[top_k_index], axis = 0) / K
    irrel = np.sum(rank_list[bottom_k_index], axis = 0) / K
    query = (alpha * query + beta * rel - gamma * irrel) / (alpha + beta - gamma)
    return query
```

Step 5. 結果與討論

在使用word embedding 前,學校的系統是無法查到字沒有完全一樣的結果的,透過word embedding,我們可以搜尋出相關的課程,再透過prf做進一步的優化,可以發現在embedding 的搜尋排序中,有完全相同的字的,分數也會較高,但是經過prf後,此一現象便消失。

	Original	Only cosine similarity	With PRF
Top 1	人工智慧在臨床資料 的分析與應用	人工智慧	人工智慧
Top 2	人工智慧及深度機器 學習之生醫藥產業應 用	機器學習	深度學習於電腦視覺
Тор 3	人工智慧神經網路模 型應用	高效能人工智慧系統	機器學習
Top 4	人工智慧	機器人視覺	先進機器人感測與控 制
Тор 5	高效能人工智慧系統	社會機器人	機器人視覺
Тор 6	人工智慧與法律專題 研究	深度學習於電腦視覺	高效能人工智慧系統
Тор 7	人工智慧與管理創新	行動學習	機器人控制
Тор 8	None	機器人控制	行動學習
Тор 9	None	人工智慧神經網路模 型應用	人工智慧神經網路模 型應用
Top 10	None	先進機器人感測與控 制	社會機器人

在PRF algorithm 中,Top-K的K值與iteration的次數是task-dependent的參數,為此,我們做了一些實驗來決定我們的模型最終要用什麼K值以及iteration次數。

Varying K value, fix iteration number(i = 10)

(see next page)

	K=10	K=30	K=50
Тор 1	人工智慧	數位學習概論	資訊理論與編碼技巧
Top 2	深度學習於電腦視覺	資訊理論與編碼技巧	數位學習概論
Тор 3	機器學習	數位系統與實驗	資訊計量學導論
Тор 4	先進機器人感測與控 制	資料科學程式設計	資料科學程式設計
Тор 5	機器人視覺	多媒體設計與評估	量子計算與資訊導論
Тор 6	高效能人工智慧系統	數位人文概論	數位系統與實驗
Тор 7	機器人控制	數位系統設計	電子計算機概論
Тор 8	行動學習	數位語音處理概論	多媒體設計與評估
Тор 9	人工智慧神經網路模 型應用	進階生物晶片操作與 資料分析	資料結構與演算法
Тор 10	社會機器人	數位邏輯實驗	數位人文概論

我們可以發現,隨著K值越來越大,與我們的query "人工智慧" 完全相符的結果已經越來越少,這跟我們在網路上查到的結果相符,prf容易造成query drift的現象 (查詢目標偏移),所以我們選用 k值=10

Varying iteration number, fix K value (K = 10)

	K=10	K=30	K=50
Top 1	人工智慧	人工智慧	人工智慧
Top 2	深度學習於電腦視覺	深度學習於電腦視覺	深度學習於電腦視覺
Тор 3	機器學習	先進機器人感測與控 制	先進機器人感測與控 制
Top 4	先進機器人感測與控 制	機器學習	機器學習

Тор 5	機器人視覺	機器人視覺	機器人視覺
Top 6	高效能人工智慧系統	機器人控制	機器人控制
Top 7	機器人控制	高效能人工智慧系統	高效能人工智慧系統
Top 8	行動學習	行動學習	行動學習
Тор 9	人工智慧神經網路模 型應用	人工智慧神經網路模 型應用	人工智慧神經網路模 型應用
Тор 10	社會機器人	社會機器人	社會機器人

我們可以發現iteration number對於結果的影響較小,這是可以預期的,因為top-K的選取會影響最後query vector收斂的位置,iteration number並不會造成整個搜尋結果的偏移。

Vision

這個final project 其實還蠻好玩的,我們後來有一個發想是利用課程概述,先將其作text summarization,再把它當成我們的query feature,或著是以同學的feedback來做搜尋,但礙於並不是每堂課都有課程概述或是充足的feedback,我們最後選用了課名來當作搜尋的基準,也許日後可以再對這個PRF模型進行改進。

How to execute our code

- 1. 爬蟲部分
 - \$ cd scraper/
 - \$ python3 scrape.py
- 2. PRF部分:先開啟一個cmd視窗呼叫bert server,再開啟另一個視窗執行search.py
 - \$ bert-serving-start -model_dir chinese_L-12_H-768_A-12/
 - \$ python3 search.py